Robust generative adversarial network

نویسندگان

چکیده

Generative Adversarial Networks (GANs) are one of the most popular and powerful models to learn complex high dimensional distributions. However, they usually suffer from instability generalization issues which may lead poor generations. Most existing works focus on stabilizing training for discriminators GANs while ignoring their issue. In this work, we aim improve capability by promoting local robustness within small neighborhood samples. We prove that in sets can better generalization. Particularly, design a new robust method called Robust Network (RGAN) generator discriminator compete with each other worst-case setting Wasserstein ball. The tries map worst input distribution (rather than Gaussian used GANs) real data distribution, attempts distinguish fake distributions perturbations. Intuitively, proposed RGAN good even perform well points. Strictly, have proved obtain tighter upper bound traditional under mild assumptions, ensuring theoretical superiority over GANs. conduct our five different baselines (five GAN models). And series experiments CIFAR-10, STL-10 CelebA datasets indicate frameworks outperform baseline substantially consistently.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wasserstein Generative Adversarial Network

Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...

متن کامل

Controllable Generative Adversarial Network

Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...

متن کامل

GANGs: Generative Adversarial Network Games

Generative Adversarial Networks (GAN) have become one of the most successful frameworks for unsupervised generative modeling. As GANs are difficult to train much research has focused on this. However, very little of this research has directly exploited gametheoretic techniques.We introduce Generative Adversarial Network Games (GANGs), which explicitly model a finite zero-sum game between a gene...

متن کامل

CapsuleGAN: Generative Adversarial Capsule Network

We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates th...

متن کامل

Differentially Private Generative Adversarial Network

Generative Adversarial Network (GAN) and its variants have recently attracted intensive research interests due to their elegant theoretical foundation and excellent empirical performance as generative models. These tools provide a promising direction in the studies where data availability is limited. One common issue in GANs is that the density of the learned generative distribution could conce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2023

ISSN: ['0885-6125', '1573-0565']

DOI: https://doi.org/10.1007/s10994-023-06367-0